

What about the temporal domain, looking at transformations that take hours, days or weeks?

Measure the incorporation of unusual atoms

adapted from Price, JC et al., (2010)

Ideal tool: nanoscale secondary ion mass spectrometry (NanoSIMS)

http://lgb.epfl.ch/page-78579-en.html

But how do we know what each structure is?

Correlated optical and isotopic nanoscopy (COIN)

Grow cells in presence of an isotopically labeled metabolite	N15-Leucine incorporation
Label cells for fluorescence imaging	Immuno- staining, click labeling
Embed samples in plastic resin	LR White embedding
Cut thin sections using an ultramicrotome, place sections on silicone wafer	50-200 nm
Image the samples using light microscopy	Confocal and STED imaging
Mark the imaged regions	Burning with Mai Tai laser at 750 nm
Image same regions using SIMS	NanoSIMS 50L

COIN examples

COIN examples

Potential applications of these tools:

Relying solely on the ability to **measure isotopes** (for example, ¹⁴N, ¹⁵N, ¹²C, ¹³C):

- Cellular metabolism and turnover
- Development of organisms
- Plasticity, *in vitro* and *in vivo*
- Metamorphosis (insects)
- Metal ion distributions in tissue

Measuring the formation of new neurons after doping with erythropoetin (EPO)

Hassouna et al. (2016) Molecular Psychiatry

Looking at new and old cells in the body

Richter et al. (2017) Neurophotonics

Potential applications of these tools:

Relying solely on the ability to **measure isotopes** (for example, ¹⁴N, ¹⁵N, ¹²C, ¹³C):

- Cellular metabolism and turnover
- Development of organisms
- Plasticity, *in vitro* and *in vivo*
- Metamorphosis (insects)
- Metal ion distributions in tissue

Relying on ability to **measure isotopes at high resolution**:

- The age and metabolism of specific protein complexes and aggregates
- The turnover of membranes, organelles, or sub-organelle parts
- Protein assemblies/aggregates from human samples (blood), for diagnostics

Potential applications of these tools:

Relying solely on the ability to **measure isotopes** (for example, ¹⁴N, ¹⁵N, ¹²C, ¹³C):

- Cellular metabolism and turnover
- Development of organisms
- Plasticity, *in vitro* and *in vivo*
- Metamorphosis (insects)
- Metal ion distributions in tissue

Relying on ability to **measure isotopes at high resolution**:

- The age and metabolism of specific protein complexes and aggregates
- The turnover of membranes, organelles, or sub-organelle parts
- Protein assemblies/aggregates from human samples (blood), for diagnostics

Exploit the high resolution fully for molecular studies

• New probes and ways of labeling proteins for SIMS are needed

Incorporation of noncanonical amino acids (ncAA/UAA) into proteins

 Uses a bio-orthogonal synthetase-tRNA couple, mutagenized

 The protein of interest sequence containing an Amber stop codon

Huisgen cycloaddition

SPIEDAC reaction

Ingrid Vreja

Advantages:

Wide choice of labels for different imaging techniques

 \rightarrow with flourophores, with isotopes, **or combined** Very small tag size (less influence on proteins)

The specificity of this reaction

Ingrid Vreja

Dual probe for fluorescence and NanoSIMS

In collaboration with Prof. Ulf Diederichsen, University of Göttingen

Vreja et al. (2015) Angewandte Chemie

Vreja et al. (2015) Angewandte Chemie

0.000

non-transleaded

syntaxin 3

syntaxin

SHAP 25

0.0010

0.0005

ò

50

100

Vreja et al. (2015) Angewandte Chemie

200

150

SK155

250

300

А

Vreja et al. (2015) Angewandte Chemie

Α

Vreja et al. (2015) Angewandte Chemie

Another example probe:

In collaboration with Prof. Ulf Diederichsen, University of Göttingen

Kabatas et al. (2015) Chem Comm

COIN imaging using TriazNF1 (¹⁵N)

Kabatas et al. (2015) Chem Comm

COIN imaging using TriazNF1 (¹⁵N)

Kabatas et al. (2015) Chem Comm

Future applications: Fluorescence/SIMS/ESI/other high-resolution microscopy techniques = Boron

T. Wirtz et al. (2015) Nanotechnology

Future applications: Fluorescence/SIMS/ESI/other high-resolution microscopy techniques = Boron

Selda Kabatas

More flexibility in labeling: GFP nanobodies coupled to specific isotopes

More flexibility in labeling: GFP nanobodies coupled to specific isotopes

Felipe Opazo, Selda Kabatas

Labeling GFP with single nanobodies

Labeling GFP with two nanobodies simultaneously

→ With combination of nanobodies and SK181, **52 x Fluor, or 80 x Boron** in a single GFP-protein! High signal-to-noise ratio in SIMS.

Works fine in fluorescence (SIMS measurements coming soon)

GFP

Star635

R

Overlay (DAPI, GFP, Star635)

Ingrid Vreja Dr. Selda Kabatas Dr. Sinem Saka Sebastian Jähne Katharina Kröhnert

Prof. Dr. Ulf Diederichsen

TECHNISCHE UNIVERSITAT MÜNCHEN

Funded by project ERC CoG NeuroMolAnatomy, number 614765

Deutsche Forschungsgemeinschaft DFG

Boehringer Ingelheim Fonds Foundation for Basic Research in Medicine